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Chordal graph

Perfect elimination ordering / chordal graph

G = (V,E) a graph with V = {z1,..., 2, }:
An ordering z;, < x;, < --- < x;, of the vertexes is called a perfect
elimination ordering of G if for each j =iy, ..., i,, the restriction of G on

X; ={z;} U{zs : 2p <z, and (2, 2;) € E}

is a clique. A graph G is said to be chordal if there exists a perfect
elimination ordering of it.
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Figure: Chordal VS non-chordal graphs



Chordal graph

Equivalent conditions

G = (V, E) chordal <= for any cycle C' contained in G of four or more
vertexes, there is an edge e € E \ C connects two vertexes in C.

X4 X3

Figure: An illustrative chordal graph

@ A chordal graph is also called a triangulated one.



Backgrounds

Triangular set and decomposition

Triangular set in K[zq,...,z,] with 21 < -+ <z,
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Triangular decomposition

Polynomial sets F C K[z1, ..., %]

I
Triangular sets 71, ..., T; s.t. Z(F) = Ui, Z(7:/ ini(T;))

~ Solving F = 0 = solving all 7; =0
~» Multivariate generalization of Gaussian elimination



Backgrounds

Inspired by the pioneering works of

D. Cifuentes P.A. Parrilo  (from MIT)
on triangular sets and chordal graphs
[Cifuentes and Parrilo 2017]: chordal networks of polynomial systems
@ Connections between triangular sets and chordal graphs

@ Algorithms for computing triangular sets due to Wang become more
efficient when the input polynomial set is chordal (= Why?)

~~ [Cifuents and Parrilo 2016]: Grobner bases and chordal graphs



Backgrounds

Chordal networks
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g(a,b,c):=a®+ b2+ c?+ab+bc+ca

Figure: A chordal network (borrowed from Parrilo’s slides)

@ Elimination tree / triangular decomposition clique-wisely



Problems

Associated graphs of polynomial sets

F € K[xy,...,x,] a polynomial: the (variable) support of F', supp(F), is
the set of variables in x1,...,x, which effectively appear in F’

@ supp(F) := Upersupp(F) for F C Klz1,...,xx]

Associated graphs

F C Klzy, ..., z,], associated graph G(F) of F is an undirected graph:
(a) vertexes of G(F): the variables in supp(F)

(b) edge (z;,x;) in G(F): if there exists one polynomial F' € F with
T, x; € supp(F)

Chordal polynomial set

A polynomial set F C Klzy,...,2,] is said to be chordal if G(F) is
chordal.



Problems

Associated graphs of polynomial sets

K[ml,...,x5]
2 3
P ={xo+ 1,23 + 21,25 + 22,25 + X3, 75 + T2, T5 + T3 + T2}

2 3
Q = {xo + 21,23 + 21,73, ] + T2, T + T3, 25 + T2}

Xy X3 X4 X3

Figure: Associated graphs G(P) (chordal) and G(Q) (not chordal)



Problems

Chordal graphs in Gaussian elimination
New fill-ins in Cholesky factorization of a matrix A = LL' (credits to J.

Gilbert)
L] .. :. (] ..
1 3 7 1 H 7

rr o

G(A) G(L)
[chordal]

Matrices with chordal graphs: no new fill-ins (subgraphs) = sparse Gaus-
sian elimination [Parter 61, Rose 70, Gilbert 94]



Problems

Triangular decomposition in top-down style

The variables are handled in a strictly decreasing order: x,,,x,_1,...,21
@ widely used strategy [Wang 1993, 1998, 2000], [Chai, Gao, Yuan 2008]
@ the closest to Gaussian elimination

@ algorithms due to Wang are mostly in top-down style (!!)

Matrix in echelon form Triangular set

r1 X2 T3 Ty To X3

1 * % 0

0 1 * 0

0 0 1 *
Gaussian elimination Top-down triangular

decomposition



Problems

Problems

@ Chordal graphs in Gaussian elimination = Chordal graphs in tri-
angular decomposition in top-down style: multivariate generalization

o Changes of graph structures of the polynomials in triangular
decomposition

o relationships (like inclusion) between associated graphs of com-
puted triangular sets and the input polynomial set

@ Sparse Gaussian elimination = sparse triangular decomposition in
top-down style: multivariate generalization, on-going work

o sparse Grobner bases [Faugere, Spaenlehauer, Svartz 2014]
o sparse FGLM algorithms [Faugere, Mou 2011, 2017]



Reduction to a triangular set from a chordal polynomial set

PCKlxy,...,z,): PY ={PeP:Iv(P)=u;}

Proposition
PCKlzy,...,zy,] chordal, x1 <--- <z, perfect elimination ordering:

Let T; € K[z1,...,x,] be a polynomial with 1v(T;) =x; and supp(7;) C
supp(P@). Then T = [T, ..., Ty] is a triangular set, and G(T) € G(P).

~~In particular, supp(T;) = supp(P?) = G(T) = G(P)
P={PW, P® . pM}. QP

3 {3 U U
T=[ T, T, vy Ty ] G(T)



An counter-example for non-chordal polynomial sets

This proposition does not necessarily hold in general if the polynomial set
‘P is not chordal.

2 3
Q = {x2 + 21,23 + 21, T3, Ty + T2, Ty + 3,25 + T2}
(8

T = [x2 + 1,23 + &1, —Toxy + T3, T5 + T2]

X1 X1

X4 X3 Xy X3

Figure: The associated graphs G(Q) and G(T)



Reduction w.r.t. one variable in triangular decomposition

Theorem

PcKlzy,...,x,] chordal, 1 <---<x, perfect elimination ordering:

Let T € K[xy,...,2y,] with Iv(T) = x,, and supp(T) C supp(P), and
R C Klzy,...,2,] such that supp(R) C supp(P"™) \ {z,}. Then for
the polynomial set

B (PO p-0. Ty
where P*F) = PO UR®) for k=1,...,n—1, we have G(P) c G(P)
~In particular, supp(T) = supp(P™) = G(P) = G(P)

@ commonly-used reduction in top-down triangular decomposition

Pp={pL, P& . pm}.  G(P)
4 4 y U

P={PY, PO .., T }: GP)
v I s.t.

POURD PAURE supp(T) C supp(P™)



Some notations
mapping f;

fi o K@ \Kmial (R \ Kla;_;]) x 2Kl@i]

P— (T,R)
s.t supp(T") C supp(P) and supp(R) C supp(P) (where K[z,] = K).
P C Klzi,...,2,] and a fixed integer i (1 < ¢ < n), suppose that
(T;, Rs) = f;(PD) for some f;. For j =1,...,n, define
P, if j >4
red;(PY)) .= {T;}, if j=1i

PO URY, ifj<i
and red;(P) := U, red;(PY)). In particular, write

red;(P) :=red;(red; 11 (- - - (red,,(P))--+))

The above theorem becomes

G(red, (P)) € G(P), and the equality holds if supp(T},) = supp(P™).



____ Backgrounds Problems Top-down Wang_Applications |

Reduction w.r.t. all variables in triangular decomposition

p={pPW, P& . ph-b phy. G(P)
3 3 \ U U
red, (P) = {’ﬁ(l), pe . p-D, T, }: G(red,(P))
bl I I
red, 1 (P) =[PV, PA . T,  T,}: Glred, . (P))
-
edi(P)={ T, To, ..., Tu, Tpl: Gredi(P))

Proposition

P C K[z, ...,x,] chordal, 1 < -+ < z,, perfect elimination ordering:

For each i (1 <7 < n), suppose that (T}, R;) = fi(red; 41 (P)®) for some
fi and supp(7;) = supp(red; ;1 (P)@). Then

G(reds (P)) = -+ = G(red,_1(P)) = G(red, (P)) = G(P).



Counter example for successive inclusions
supp(T;) C supp(red; 41 (P)?): then in general we will NOT have

G(redy(P)) C -+ C G(red,_1(P)) C G(red,(P)) C G(P)

Example

P = {z2 + 21,23 + T1, T} + T2, T3 + T3, T5 + Tz, Ts + T3 + Ta}
Q = reds(P) = {@o + x1, 23 + 21,23, 22 + T2, 25 + T3, 25 + X2}
3
T, = prem(x3 + 23,22 + x3) = —Tox4 + 23,
R4 = {prem(x] + 2o, —Tow4 + 23)} = {23 — 23},

I

— 2 3
Q' :=redy(P) = {z2 + 21,23 + 21,25 — T3, T3, —T2%4 + L3, T5 + T2}




Subgraphs of the input chordal graph

P C K[zy,...,2,] chordal, 21 < --- < x,, perfect elimination ordering:

For eachi=mn,...,1, G(red;(P)) C G(P)|.

Corollary
P C Klz1,...,2,] chordal, z1 < --- < x, perfect elimination ordering:

If 7 := red;(P) does not contain any nonzero constant, then 7 forms a
triangular set such that G(7) C G(P).

@ 7 above: the main component in the triangular decomposition

@ Valid for ANY algorithms for triangular decomposition in top-down
style

@ Problem: what about the other triangular sets?



Wang's method: algorithm

[Wang 93]: Wang's method, simply-structured algorithm for triangular de-
composition in top-down style

Algorithm 1: Wang’s method for triangular decomposition ¥ := TriDecWang(P)

Input: F, a polynomial set in K|z]

Output: ¥, a set of finitely many triangular systems which form a triangular
decomposition of F

1 ®:={(F,0,n)};

2 while ® # () do

3 | (P, Qi) = pop(®);

4 if i = 0 then

5

6

L U:=vU{(P,Q}

Break;

7 | while #(P®) > 1 do

8 T := a polynomial in P with minimal degree in z;;
9 @ =0 U{(P\{T}U {ini(T),tail(T)}, Q,%)};
10 P:=PON\{T}
11 P:=P\P;
12 for P € P do
18 | P:=PU{prem(P,T)};
14 Q:= QU {ini(T)}

15 | 2:=2U{(P,Qi-1)}
16 for (P,Q) € ¥ do
17 L if P contains a non-zero constant then

[ T:=0\{(P,Q)}

19 return ¥




Wang's method: binary decomposition tree

F = ini(F)zs + tail(F)

(P,2,9)
ini(T) #0 ini(T) = 0

0 T U I O ) (P, 2.3} (P.0")

......... ﬂ / ;

......... CXDNCET

P =P\ PO U{T}U {prem(P,T): PP}, Q :=Qu {ini(T)},
P =P\ {T} U {ini(T), tail(T)}, Q" =0,



Wang's method: left child

Proposition: Wang's method applied to F C K[z, ..., z,], chordal

F C Klz1,...,z,] chordal, 21 < --- < a,, perfect elimination ordering:

(P, Q, 1) arbitrary node in the binary decomposition tree such that G(P) C
G(F), T € P with minimal degree in z;. Denote

P =P\ PO U{T}U {prem(P,T): P e PW}.

Then G(P’) C G(F).

ini(T) # 0

G(P') € G(F) |on the conditions that G(F) is chordal and G(P) C G(F)



Wang's method: right child

(P, Q,i) arbitrary node in the binary decomposition tree, 7' € P with
minimal degree in x;. Denote

P’ =P \{T} U{ini(T), tail(T)}.

Then G(P") C G(P).
~In particular, supp(tail(T)) = supp(T) = G(P") = G(P).

ini(T) # 0 ini(T) = 0

(P//, Q//’,L')

G(P") C G(P) | under no conditions



Wang's method: any node

Theorem: Wang's method applied to F C K|z, ..., z,], chordal

F C K[z1,...,2,] chordal, 21 < - -+ < ,, perfect elimination ordering:

For any node (P, Q, %) in the binary decomposition tree, G(P) C G(F)

Corollary: Wang's method applied to F C K[z, ..., 2,], chordal

F C K[z1,...,x,] chordal, 21 < - -+ < a,, perfect elimination ordering:

For any triangular set 7 computed by Wang's method, G(7) C G(F)



Applications

Complexity analysis for triangular decomposition in
top-down style

Chordal completion

For a graph G, another graph G’ is called a chordal completion of G if G’
is chordal with G as its subgraph.

The treewidth of a graph G is defined to be the minimum of the sizes of
the largest cliques in all the possible chordal completions of G.

@ many NP-complete problems related to graphs can be solved effi-
ciently for graphs of bounded treewidth [Arnborg, Proskurowski 1989]

@ Complexities for computing Grobner bases for polynomial sets with
small treewidth [Cifuents and Parrilo 2016]

Reminding you of the inclusion of graphs for Wang's method

The input chordal associated graph: upper bound

@ Complexities for triangular decomposition: first for polynomial sets
with chordal graphs / small treewidth



Applications

Variable sparsity of polynomial sets

Variable sparsity

G(F) = (V, E) associated graph of F = {F,...,F.} C K[zy,..., 2]
Define the variable sparsity s, (F) of F as

) =181/ (7).

denominator: edge number of a complete graph of |V| vertexes

G(F) can be extended to a weighted graph G"(F) by associating the
number #{F € F : z;,x; € supp(F)} to each edge (z;,x;) of G(F)

Weighted variable sparsity
the weighted variable sparsity s (F) of F can be defined as
cE We
511:7(]:) _ ZLEE2 ,
e (\v )

where 7 is the number of polynomials in F.

‘ Sparse triangular decomposition ‘




A refined algorithm for regular decomposition
Input: a polynomial set F C K[z]

Output: a variable ordering T and a regular decomposition ® of F with
respect to ©

@ Compute the variable sparsity s, of F
@ If s, is smaller than some sparsity threshold sy (F is sparse), then

@ If G(F) is chordal, then compute its perfect elimination ordering
=1
T

@ Else compute its chordal completion G(F) ? and a perfect elim-
ination ordering T of G(F)

@ Compute the regular decomposition of F with respect to = with a
top-down algorithm 3

1[Rose, Tarjan, and Lueker 1976]
2|Bodlaender and Koster 2008]
3Say, [Wang 2000]



Applications

Sparse triangular decomposition
Comparisons of timings for computing regular decomposition of one class
of chordal and variable sparse polynomials [Cifuentes and Parrilo 2017]

Fi = {xkxpys — Tpp1Tpao  k=1,2,...,0 }, i€ Zsg

Table: Regular decomposition with RegSer in Epsilon: top-down

n Sy tp t, i t/ty
10 | 0.53 0.19 0.14 0.21 0.22 0.11 0.21 0.18 0.95
20 | 0.28 1.44 4.24 4.45 3.15 441 4.65 4.18 2.90

25 (023 | 425 50.62 20.29 15.55 25.01 35.10 29.31 6.90
30019 | 11.94 | 177.37 185.94  130.54 14297 103.42 | 148.05 | 12.40
35| 0.17 | 4233 | 560.56 291.35 63343 320.98 938.45 | 548.95 | 12.97
40 | 0.15 | 161.11 | 1883.64 3618.04 4289.13 4013.99 2996.37 | 3360.23 | 20.86

Table: Regular decomposition with RegularChains in Maple: not top-down

n Sy tp t, t, t/ty
15 | 0.37 45.90 17.29 21.41 13.62 32.50 19.63 20.89 0.46
17 | 0.33 | 216.69 87.29 197.35 104.86 68.28 130.83 117.72 0.54
19 | 0.30 | 1303.08 | 415.90 308.37 780.75 221.75 831.15 511.58 0.39
21 | 0.27 | 8787.32 | 1823.29 2064.55 2431.49 1926.02 1593.36 | 1967.74 | 0.22
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Applications

Future works

@ Chordality in regular decomposition in top-down style: the most pop-
ular triangular decomposition

@ More other graph structures to study?

Thanks!
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