On the chordality of polynomial sets in triangular decomposition in top-down style

Chenqi Mou

joint work with Yang Bai

LMIB-School of Mathematics and Systems Science
Beihang University, China

PCA 2018
St. Petersburg, Russia

Chordal graph

Perfect elimination ordering / chordal graph
$G=(V, E)$ a graph with $V=\left\{x_{1}, \ldots, x_{n}\right\}$:
An ordering $x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{n}}$ of the vertexes is called a perfect elimination ordering of G if for each $j=i_{1}, \ldots, i_{n}$, the restriction of G on

$$
X_{j}=\left\{x_{j}\right\} \cup\left\{x_{k}: x_{k}<x_{j} \text { and }\left(x_{k}, x_{j}\right) \in E\right\}
$$

is a clique. A graph G is said to be chordal if there exists a perfect elimination ordering of it.

Figure: Chordal VS non-chordal graphs

Chordal graph

Equivalent conditions

$G=(V, E)$ chordal \Longleftrightarrow for any cycle C contained in G of four or more vertexes, there is an edge $e \in E \backslash C$ connects two vertexes in C.

Figure: An illustrative chordal graph

- A chordal graph is also called a triangulated one.

Triangular set and decomposition

Triangular set in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $x_{1}<\cdots<x_{n}$

Triangular decomposition

Polynomial sets $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ \Downarrow
Triangular sets $\mathcal{T}_{1}, \ldots, \mathcal{T}_{t}$ s.t. $\mathrm{Z}(\mathcal{F})=\bigcup_{i=1}^{t} \mathrm{Z}\left(\mathcal{T}_{i} / \operatorname{ini}\left(\mathcal{T}_{i}\right)\right)$
\rightsquigarrow Solving $\mathcal{F}=0 \Longrightarrow$ solving all $\mathcal{T}_{i}=0$
\rightsquigarrow Multivariate generalization of Gaussian elimination

Inspired by the pioneering works of

D. Cifuentes

P.A. Parrilo (from MIT)
on triangular sets and chordal graphs
[Cifuentes and Parrilo 2017]: chordal networks of polynomial systems

- Connections between triangular sets and chordal graphs
- Algorithms for computing triangular sets due to Wang become more efficient when the input polynomial set is chordal $(\Longrightarrow$ Why?)
\rightsquigarrow [Cifuents and Parrilo 2016]: Gröbner bases and chordal graphs

Chordal networks

Figure: A chordal network (borrowed from Parrilo's slides)

- Elimination tree / triangular decomposition clique-wisely

Associated graphs of polynomial sets

$F \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial: the (variable) support of $F, \operatorname{supp}(F)$, is the set of variables in x_{1}, \ldots, x_{n} which effectively appear in F

- $\operatorname{supp}(\mathcal{F}):=\cup_{F \in \mathcal{F}} \operatorname{supp}(F)$ for $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$

Associated graphs

$\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, associated graph $G(\mathcal{F})$ of \mathcal{F} is an undirected graph:
(a) vertexes of $G(\mathcal{F})$: the variables in $\operatorname{supp}(\mathcal{F})$
(b) edge $\left(x_{i}, x_{j}\right)$ in $G(\mathcal{F})$: if there exists one polynomial $F \in \mathcal{F}$ with $x_{i}, x_{j} \in \operatorname{supp}(F)$

Chordal polynomial set

A polynomial set $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is said to be chordal if $G(\mathcal{F})$ is chordal.

Associated graphs of polynomial sets

$$
\begin{gathered}
\mathbb{K}\left[x_{1}, \ldots, x_{5}\right] \\
\mathcal{P}=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{4}^{2}+x_{2}, x_{4}^{3}+x_{3}, x_{5}+x_{2}, x_{5}+x_{3}+x_{2}\right\} \\
\mathcal{Q}
\end{gathered}=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{3}, x_{4}^{2}+x_{2}, x_{4}^{3}+x_{3}, x_{5}+x_{2}\right\}, ~ l
$$

Figure: Associated graphs $G(\mathcal{P})$ (chordal) and $G(\mathcal{Q})$ (not chordal)

Chordal graphs in Gaussian elimination

New fill-ins in Cholesky factorization of a matrix $A=L L^{t}$ (credits to J . Gilbert)

G(A)

G(L)
[chordal]

Matrices with chordal graphs: no new fill-ins (subgraphs) \Longrightarrow sparse Gaussian elimination [Parter 61, Rose 70, Gilbert 94]

Triangular decomposition in top-down style

The variables are handled in a strictly decreasing order: $x_{n}, x_{n-1}, \ldots, x_{1}$

- widely used strategy [Wang 1993, 1998, 2000], [Chai, Gao, Yuan 2008]
- the closest to Gaussian elimination
- algorithms due to Wang are mostly in top-down style (!!)

Matrix in echelon form Triangular set

$$
\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
* & 0 & 0 \\
* & * & 0 \\
* & * & *
\end{array}\right]
$$

Gaussian elimination Top-down triangular
decomposition

Problems

(1) Chordal graphs in Gaussian elimination \Longrightarrow Chordal graphs in triangular decomposition in top-down style: multivariate generalization

- Changes of graph structures of the polynomials in triangular decomposition
- relationships (like inclusion) between associated graphs of computed triangular sets and the input polynomial set
(2) Sparse Gaussian elimination \Longrightarrow sparse triangular decomposition in top-down style: multivariate generalization, on-going work
- sparse Gröbner bases [Faugère, Spaenlehauer, Svartz 2014]
- sparse FGLM algorithms [Faugère, Mou 2011, 2017]

Reduction to a triangular set from a chordal polynomial set

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]: \mathcal{P}^{(i)}=\left\{P \in \mathcal{P}: \operatorname{lv}(P)=x_{i}\right\}$

Proposition

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
Let $T_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with $\operatorname{lv}\left(T_{i}\right)=x_{i}$ and $\operatorname{supp}\left(T_{i}\right) \subset$ $\operatorname{supp}\left(\mathcal{P}^{(i)}\right)$. Then $\mathcal{T}=\left[T_{1}, \ldots, T_{n}\right]$ is a triangular set, and $G(\mathcal{T}) \subset G(\mathcal{P})$.
\rightsquigarrow In particular, $\operatorname{supp}\left(T_{i}\right)=\operatorname{supp}\left(\mathcal{P}^{(i)}\right) \Longrightarrow G(\mathcal{T})=G(\mathcal{P})$

$$
\begin{array}{ccccc}
\mathcal{P}=\left\{\begin{array}{cccc}
\mathcal{P}^{(1)}, & \mathcal{P}^{(2)}, & \ldots, & \mathcal{P}^{(n)}
\end{array}\right\}: & G(\mathcal{P}) \\
\Downarrow & \Downarrow & & \Downarrow & \cup \\
\mathcal{T}=\left[\begin{array}{cccc}
T_{1}, & T_{2}, & \ldots, & T_{n}
\end{array}\right]: & G(\mathcal{T})
\end{array}
$$

An counter-example for non-chordal polynomial sets

This proposition does not necessarily hold in general if the polynomial set \mathcal{P} is not chordal.

$$
\begin{gathered}
\mathcal{Q}=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{3}, x_{4}^{2}+x_{2}, x_{4}^{3}+x_{3}, x_{5}+x_{2}\right\} \\
\Downarrow \\
\mathcal{T}=\left[x_{2}+x_{1}, x_{3}+x_{1},-x_{2} x_{4}+x_{3}, x_{5}+x_{2}\right]
\end{gathered}
$$

Figure: The associated graphs $G(\mathcal{Q})$ and $G(\mathcal{T})$

Reduction w.r.t. one variable in triangular decomposition

Theorem

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
Let $T \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{lv}(T)=x_{n}$ and $\operatorname{supp}(T) \subset \operatorname{supp}\left(\mathcal{P}^{(n)}\right)$, and $\mathcal{R} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{supp}(\mathcal{R}) \subset \operatorname{supp}\left(\mathcal{P}^{(n)}\right) \backslash\left\{x_{n}\right\}$. Then for the polynomial set

$$
\tilde{\mathcal{P}}=\left\{\tilde{\mathcal{P}}^{(1)}, \ldots, \tilde{\mathcal{P}}^{(n-1)}, T\right\}
$$

where $\tilde{\mathcal{P}}^{(k)}=\mathcal{P}^{(k)} \cup \mathcal{R}^{(k)}$ for $k=1, \ldots, n-1$, we have $G(\tilde{\mathcal{P}}) \subset G(\mathcal{P})$
\rightsquigarrow In particular, $\operatorname{supp}(T)=\operatorname{supp}\left(\mathcal{P}^{(n)}\right) \Longrightarrow G(\tilde{\mathcal{P}})=G(\mathcal{P})$

- commonly-used reduction in top-down triangular decomposition

$$
\begin{array}{ccccc}
\mathcal{P}=\left\{\begin{array}{cccc}
\mathcal{P}^{(1)}, & \mathcal{P}^{(2)}, & \ldots, & \mathcal{P}^{(n)}
\end{array}\right\}: & G(\mathcal{P}) \\
\Downarrow & \Downarrow & & \Downarrow & \cup \\
\tilde{\mathcal{P}}=\left\{\begin{array}{cccc}
\tilde{\mathcal{P}}^{(1)}, & \tilde{\mathcal{P}}^{(2)}, & \ldots, & T
\end{array}\right\}: & G(\tilde{\mathcal{P}}) \\
\| & \| & & \text { s.t. } & \\
\mathcal{P}^{(1)} \cup \mathcal{R}^{(1)} & \mathcal{P}^{(2)} \cup \mathcal{R}^{(2)} & \operatorname{supp}(T) \subset \operatorname{supp}\left(\mathcal{P}^{(n)}\right)
\end{array}
$$

Some notations

mapping f_{i}

$$
\begin{aligned}
f_{i}: 2^{\mathbb{K}\left[\boldsymbol{x}_{i}\right] \backslash \mathbb{K}\left[\boldsymbol{x}_{i-1}\right]} & \rightarrow\left(\mathbb{K}\left[\boldsymbol{x}_{i}\right] \backslash \mathbb{K}\left[\boldsymbol{x}_{i-1}\right]\right) \times 2^{\mathbb{K}\left[\boldsymbol{x}_{i-1}\right]} \\
\mathcal{P} & \mapsto(T, \mathcal{R})
\end{aligned}
$$

s.t $\operatorname{supp}(T) \subset \operatorname{supp}(\mathcal{P})$ and $\operatorname{supp}(\mathcal{R}) \subset \operatorname{supp}(\mathcal{P})\left(\right.$ where $\left.\mathbb{K}\left[\boldsymbol{x}_{0}\right]=\mathbb{K}\right)$.
$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and a fixed integer $i(1 \leq i \leq n)$, suppose that $\left(T_{i}, \mathcal{R}_{i}\right)=f_{i}\left(\mathcal{P}^{(i)}\right)$ for some f_{i}. For $j=1, \ldots, n$, define

$$
\operatorname{red}_{i}\left(\mathcal{P}^{(j)}\right):= \begin{cases}\mathcal{P}^{(j)}, & \text { if } j>i \\ \left\{T_{i}\right\}, & \text { if } j=i \\ \mathcal{P}^{(j)} \cup \mathcal{R}_{i}^{(j)}, & \text { if } j<i\end{cases}
$$

and $\operatorname{red}_{i}(\mathcal{P}):=\cup_{j=1}^{n} \operatorname{red}_{i}\left(\mathcal{P}^{(j)}\right)$. In particular, write

$$
\overline{\operatorname{red}}_{i}(\mathcal{P}):=\operatorname{red}_{i}\left(\operatorname{red}_{i+1}\left(\cdots\left(\operatorname{red}_{n}(\mathcal{P})\right) \cdots\right)\right)
$$

The above theorem becomes

$G\left(\operatorname{red}_{n}(\mathcal{P})\right) \subset G(\mathcal{P})$, and the equality holds if $\operatorname{supp}\left(T_{n}\right)=\operatorname{supp}\left(\mathcal{P}^{(n)}\right)$.

Reduction w.r.t. all variables in triangular decomposition

$$
\begin{aligned}
& \begin{array}{ccccc}
\mathcal{P}=\left\{\begin{array}{ccc}
\mathcal{P}^{(1)} & \mathcal{P}^{(2)}, & \ldots, \\
\Downarrow & \mathcal{P}^{(n-1)}, & \mathcal{P}^{(n)} \\
\Downarrow & \Downarrow & \\
\Downarrow & \Downarrow
\end{array}\right\} .
\end{array} \\
& \operatorname{red}_{n}(\mathcal{P})=\left\{\begin{array}{llll}
\tilde{\mathcal{P}}^{(1)}, & \tilde{\mathcal{P}}^{(2)}, & \left.\ldots, \quad \tilde{\mathcal{P}}^{(n-1)}, \quad T_{n}\right\}: \quad G\left(\operatorname{red}_{n}(\mathcal{P})\right)
\end{array}\right. \\
& \Downarrow \quad \downarrow \\
& \Downarrow \\
& \downarrow \\
& ? ? \\
& \overline{\operatorname{red}}_{n-1}(\mathcal{P})=\left\{\tilde{\tilde{\mathcal{P}}}^{(1)}, \quad \tilde{\tilde{\mathcal{P}}}^{(2)}, \quad \ldots, \quad T_{n-1}, \quad T_{n}\right\}: \quad G\left(\overline{\operatorname{red}}_{n-1}(\mathcal{P})\right)
\end{aligned}
$$

Proposition

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
For each $i(1 \leq i \leq n)$, suppose that $\left(T_{i}, \mathcal{R}_{i}\right)=f_{i}\left(\overline{\operatorname{red}}_{i+1}(\mathcal{P})^{(i)}\right)$ for some f_{i} and $\operatorname{supp}\left(T_{i}\right)=\operatorname{supp}\left(\overline{\operatorname{red}}_{i+1}(\mathcal{P})^{(i)}\right)$. Then

$$
G\left(\overline{\operatorname{red}}_{1}(\mathcal{P})\right)=\cdots=G\left(\overline{\operatorname{red}}_{n-1}(\mathcal{P})\right)=G\left(\operatorname{red}_{n}(\mathcal{P})\right)=G(\mathcal{P}) .
$$

Counter example for successive inclusions

 $\operatorname{supp}\left(T_{i}\right) \subset \operatorname{supp}\left(\overline{\operatorname{red}}_{i+1}(\mathcal{P})^{(i)}\right)$: then in general we will NOT have$$
G\left(\overline{\operatorname{red}}_{1}(\mathcal{P})\right) \subset \cdots \subset G\left(\overline{\operatorname{red}}_{n-1}(\mathcal{P})\right) \subset G\left(\operatorname{red}_{n}(\mathcal{P})\right) \subset G(\mathcal{P})
$$

Example

$$
\begin{gathered}
\mathcal{P}=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{4}^{2}+x_{2}, x_{4}^{3}+x_{3}, x_{5}+x_{2}, x_{5}+x_{3}+x_{2}\right\} \\
\mathcal{Q}=\operatorname{red}_{5}(\mathcal{P})=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{3}, x_{4}^{2}+x_{2}, x_{4}^{3}+x_{3}, x_{5}+x_{2}\right\} \\
\Downarrow \\
T_{4}=\operatorname{prem}\left(x_{4}^{3}+x_{3}, x_{4}^{2}+x_{2}\right)=-x_{2} x_{4}+x_{3}, \\
\mathcal{R}_{4}=\left\{\operatorname{prem}\left(x_{4}^{2}+x_{2},-x_{2} x_{4}+x_{3}\right)\right\}=\left\{x_{3}^{2}-x_{2}^{3}\right\}, \\
\Downarrow \\
\mathcal{Q}^{\prime}:=\overline{\operatorname{red}}_{4}(\mathcal{P})=\left\{x_{2}+x_{1}, x_{3}+x_{1}, x_{3}^{2}-x_{2}^{3}, x_{3},-x_{2} x_{4}+x_{3}, x_{5}+x_{2}\right\} .
\end{gathered}
$$

Subgraphs of the input chordal graph

Theorem

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
For each $i=n, \ldots, 1$,

$$
G\left(\overline{\operatorname{red}}_{i}(\mathcal{P})\right) \subset G(\mathcal{P}) .
$$

Corollary

$\mathcal{P} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
If $\mathcal{T}:=\overline{\operatorname{red}}_{1}(\mathcal{P})$ does not contain any nonzero constant, then \mathcal{T} forms a triangular set such that $G(\mathcal{T}) \subset G(\mathcal{P})$.

- \mathcal{T} above: the main component in the triangular decomposition
- Valid for ANY algorithms for triangular decomposition in top-down style
- Problem: what about the other triangular sets?

Wang's method: algorithm

[Wang 93]: Wang's method, simply-structured algorithm for triangular decomposition in top-down style

```
Algorithm 1: Wang's method for triangular decomposition \(\Psi:=\operatorname{TriDecWang}(\mathcal{P})\)
    Input: \(\mathcal{F}\), a polynomial set in \(\mathbb{K}[\boldsymbol{x}]\)
    Output: \(\Psi\), a set of finitely many triangular systems which form a triangular
                decomposition of \(\mathcal{F}\)
    \(\Phi:=\{(\mathcal{F}, \emptyset, n)\} ;\)
    while \(\Phi \neq \emptyset\) do
        \((\mathcal{P}, \mathcal{Q}, i):=\operatorname{pop}(\Phi) ;\)
        if \(i=0\) then
            \(\Psi:=\Psi \cup\{(\mathcal{P}, \mathcal{Q})\} ;\)
            Break;
        while \(\#\left(\mathcal{P}^{(i)}\right)>1\) do
            \(T:=\) a polynomial in \(\mathcal{P}^{(i)}\) with minimal degree in \(x_{i}\);
            \(\Phi:=\Phi \cup\{(\mathcal{P} \backslash\{T\} \cup\{\operatorname{ini}(T), \operatorname{tail}(T)\}, \mathcal{Q}, i)\} ;\)
            \(\overline{\mathcal{P}}:=\mathcal{P}^{(i)} \backslash\{T\} ;\)
            \(\mathcal{P}:=\mathcal{P} \backslash \overline{\mathcal{P}} ;\)
            for \(P \in \mathcal{P}^{(i)}\) do
                \(\mathcal{P}:=\mathcal{P} \cup\{\operatorname{prem}(P, T)\} ;\)
            \(\mathcal{Q}:=\mathcal{Q} \cup\{\operatorname{ini}(T)\} ;\)
        \(\Phi:=\Phi \cup\{(\mathcal{P}, \mathcal{Q}, i-1)\} ;\)
    for \((\mathcal{P}, \mathcal{Q}) \in \Psi\) do
        if \(\mathcal{P}\) contains a non-zero constant then
            \(\Psi:=\Psi \backslash\{(\mathcal{P}, \mathcal{Q})\}\)
    return \(\Psi\)
```

Wang's method: binary decomposition tree

$$
\begin{array}{rlrl}
\mathcal{P}^{\prime} & :=\mathcal{P} \backslash \mathcal{P}^{(i)} \cup\{T\} \cup\{\operatorname{prem}(P, T): P \in \mathcal{P}\}, & \mathcal{Q}^{\prime}:=\mathcal{Q} \cup\{\operatorname{ini}(T)\}, \\
\mathcal{P}^{\prime \prime}: & :=\mathcal{P} \backslash\{T\} \cup\{\operatorname{ini}(T), \operatorname{tail}(T)\}, & \mathcal{Q}^{\prime \prime} & :=\mathcal{Q},
\end{array}
$$

Wang's method: left child

Proposition: Wang's method applied to $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, chordal

$\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
$(\mathcal{P}, \mathcal{Q}, i)$ arbitrary node in the binary decomposition tree such that $G(\mathcal{P}) \subset$
$G(\mathcal{F}), T \in \mathcal{P}$ with minimal degree in x_{i}. Denote

$$
\mathcal{P}^{\prime}=\mathcal{P} \backslash \mathcal{P}^{(i)} \cup\{T\} \cup\left\{\operatorname{prem}(P, T): P \in \mathcal{P}^{(i)}\right\} .
$$

Then $G\left(\mathcal{P}^{\prime}\right) \subset G(\mathcal{F})$.

$G\left(\mathcal{P}^{\prime}\right) \subset G(\mathcal{F})$ on the conditions that $G(\mathcal{F})$ is chordal and $G(\mathcal{P}) \subset G(\mathcal{F})$

Wang's method: right child

Proposition

$(\mathcal{P}, \mathcal{Q}, i)$ arbitrary node in the binary decomposition tree, $T \in \mathcal{P}^{(i)}$ with minimal degree in x_{i}. Denote

$$
\mathcal{P}^{\prime \prime}=\mathcal{P} \backslash\{T\} \cup\{\operatorname{ini}(T), \operatorname{tail}(T)\} .
$$

Then $G\left(\mathcal{P}^{\prime \prime}\right) \subset G(P)$.

$$
\rightsquigarrow \text { In particular, } \operatorname{supp}(\operatorname{tail}(T))=\operatorname{supp}(T) \Longrightarrow G\left(\mathcal{P}^{\prime \prime}\right)=G(\mathcal{P}) \text {. }
$$

$G\left(\mathcal{P}^{\prime \prime}\right) \subset G(P)$ under no conditions

Wang's method: any node

Theorem: Wang's method applied to $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, chordal

$\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the binary decomposition tree, $G(\mathcal{P}) \subset G(\mathcal{F})$

Corollary: Wang's method applied to $\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, chordal
$\mathcal{F} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ chordal, $x_{1}<\cdots<x_{n}$ perfect elimination ordering:
For any triangular set \mathcal{T} computed by Wang's method, $G(\mathcal{T}) \subset G(\mathcal{F})$

Complexity analysis for triangular decomposition in top-down style

Chordal completion

For a graph G, another graph G^{\prime} is called a chordal completion of \mathcal{G} if G^{\prime} is chordal with G as its subgraph.

The treewidth of a graph G is defined to be the minimum of the sizes of the largest cliques in all the possible chordal completions of G.

- many NP-complete problems related to graphs can be solved efficiently for graphs of bounded treewidth [Arnborg, Proskurowski 1989]
- Complexities for computing Gröbner bases for polynomial sets with small treewidth [Cifuents and Parrilo 2016]

Reminding you of the inclusion of graphs for Wang's method

The input chordal associated graph: upper bound

- Complexities for triangular decomposition: first for polynomial sets with chordal graphs / small treewidth

Variable sparsity of polynomial sets

Variable sparsity

$G(\mathcal{F})=(V, E)$ associated graph of $\mathcal{F}=\left\{F_{1}, \ldots, F_{r}\right\} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Define the variable sparsity $s_{v}(\mathcal{F})$ of \mathcal{F} as

$$
s_{v}(\mathcal{F})=|E| /\binom{2}{|V|},
$$

denominator: edge number of a complete graph of $|V|$ vertexes
$G(\mathcal{F})$ can be extended to a weighted graph $G^{w}(\mathcal{F})$ by associating the number $\#\left\{F \in \mathcal{F}: x_{i}, x_{j} \in \operatorname{supp}(F)\right\}$ to each edge $\left(x_{i}, x_{j}\right)$ of $G(\mathcal{F})$

Weighted variable sparsity

the weighted variable sparsity $s_{v}^{w}(\mathcal{F})$ of \mathcal{F} can be defined as

$$
s_{v}^{w}(\mathcal{F})=\frac{\sum_{e \in E} w_{e}}{r \cdot\binom{2}{|V|}},
$$

where r is the number of polynomials in \mathcal{F}.
Sparse triangular decomposition

A refined algorithm for regular decomposition

Input: a polynomial set $\mathcal{F} \subset \mathbb{K}[\boldsymbol{x}]$
Output: a variable ordering $\overline{\boldsymbol{x}}$ and a regular decomposition Φ of \mathcal{F} with respect to $\overline{\boldsymbol{x}}$
(1) Compute the variable sparsity s_{v} of \mathcal{F}
(2) If s_{v} is smaller than some sparsity threshold s_{0} (\mathcal{F} is sparse), then
(1) If $G(\mathcal{F})$ is chordal, then compute its perfect elimination ordering \bar{x}^{1}
(2) Else compute its chordal completion $\bar{G}(\mathcal{F})^{2}$ and a perfect elimination ordering $\overline{\boldsymbol{x}}$ of $\bar{G}(\mathcal{F})$
(3) Compute the regular decomposition of \mathcal{F} with respect to \bar{x} with a top-down algorithm ${ }^{3}$

```
1}[Rose, Tarjan, and Lueker 1976]
2 [Bodlaender and Koster 2008]
3}\mathrm{ 3ay, [Wang 2000]
```


Sparse triangular decomposition

Comparisons of timings for computing regular decomposition of one class of chordal and variable sparse polynomials [Cifuentes and Parrilo 2017]

$$
\mathcal{F}_{i}:=\left\{x_{k} x_{k+3}-x_{k+1} x_{k+2}: k=1,2, \ldots, i\right\}, \quad i \in \mathbb{Z}_{>0}
$$

Table: Regular decomposition with RegSer in Epsilon: top-down

n	s_{v}	t_{p}	t_{r}					\bar{t}_{r}	\bar{t}_{r} / t_{p}
10	0.53	0.19	0.14	0.21	0.22	0.11	0.21	0.18	0.55
20	0.28	1.44	4.24	4.45	3.15	4.41	4.65	4.18	2.90
25	0.23	4.25	50.62	20.29	15.55	25.01	35.10	29.31	6.90
30	0.19	11.94	177.37	1855.94	130.54	142.97	103.42	148.05	12.40
35	0.17	42.33	560.56	291.35	633.43	320.98	938.45	548.95	12.97
40	0.15	161.11	1883.64	3618.04	4289.13	4013.99	2996.37	3360.23	20.86

Table: Regular decomposition with RegularChains in Maple: not top-down

n	s_{v}	t_{p}	t_{r}					\bar{t}_{r}	\bar{t}_{r} / t_{p}
15	0.37	45.90	17.29	21.41	13.62	32.50	19.63	20.89	0.46
17	0.33	216.69	87.29	197.35	104.86	68.28	130.83	117.72	0.54
19	0.30	1303.08	415.90	308.37	780.75	221.75	831.15	511.58	0.39
21	0.27	8787.32	1823.29	2064.55	2431.49	1926.02	1593.36	1967.74	0.22

Sparse triangular decomposition

Comparisons of timings for computing regular decomposition of one class of chordal and variable sparse polynomials [Cifuentes and Parrilo 2017]

$$
\mathcal{F}_{i}:=\left\{x_{k} x_{k+3}-x_{k+1} x_{k+2}: k=1,2, \ldots, i\right\}, \quad i \in \mathbb{Z}_{>0}
$$

Table: Regular decomposition with RegSer in Epsilon: top-down

n	s_{v}	t_{p}	t_{r}				\bar{t}_{r}	\bar{t}_{r} / t_{p}	
10	0.53	0.19	0.14	0.21	0.22	0.11	0.21	0.18	0.95
20	0.28	1.44	4.24	4.45	3.15	4.41	4.65	4.18	2.90
25	0.23	4.25	50.62	20.29	15.55	25.01	35.10	29.31	6.90
30	0.19	11.94	177.37	185.94	130.54	142.97	103.42	148.05	12.40
35	0.17	42.33	560.56	291.35	633.43	320.98	938.45	548.95	12.97
40	0.15	161.11	1883.64	3618.04	4289.13	4013.99	2996.37	3360.23	20.86

Table: Regular decomposition with RegularChains in Maple: not top-down

n	s_{v}	t_{p}	t_{r}					\bar{t}_{r}	\bar{t}_{r} / t_{p}
15	0.37	45.90	17.29	21.41	13.62	32.50	19.63	20.89	0.46
17	0.33	216.69	87.29	197.35	104.86	68.28	130.83	117.72	0.54
19	0.30	1303.08	415.90	308.37	780.75	221.75	831.15	511.58	0.39
21	0.27	8787.32	1823.29	2064.55	2431.49	1926.02	1593.36	1967.74	0.22

Future works

- Chordality in regular decomposition in top-down style: the most popular triangular decomposition
- More other graph structures to study?

Thanks!

